Multiagent Deep Reinforcement Learning for Cost- and Delay-Sensitive Virtual Network Function Placement and Routing

نویسندگان

چکیده

This paper proposes an effective and novel multi-agent deep reinforcement learning (MADRL)-based method for solving the joint virtual network function (VNF) placement routing (P&R;), where multiple service requests with differentiated demands are delivered at same time. The of reflected by their delay- cost-sensitive factors. We first construct a VNF P&R; problem to jointly minimize weighted sum delay resource consumption cost, which is NP-complete. Then, decoupled into two iterative subtasks: subtask subtask. Each consists concurrent parallel sequential decision processes. By invoking deterministic policy gradient technique, MADRL-P&R; framework designed perform subtasks. new joint reward internal rewards mechanism proposed match goals constraints also propose parameter migration-based model-retraining deal changing topologies. Corroborated experiments, superior its alternatives in terms cost delay, offers higher flexibility personalized demands. can efficiently accelerate convergence under moderate topology changes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-Sensitive Reinforcement Learning

We introduce cost-sensitive regression as a way to introduce information obtained by planning as background knowledge into a relational reinforcement learning algorithm. By offering a trade-off between using knowledge rich, but computationally expensive knowledge resulting from planning like approaches such as minimax search and computationally cheap, but possibly incorrect generalizations, the...

متن کامل

Coordination in multiagent reinforcement learning systems by virtual reinforcement signals

This paper presents a novel method for on-line coordination in multiagent reinforcement learning systems. In this method a reinforcement-learning agent learns to select its action estimating system dynamics in terms of both the natural reward for task achievement and the virtual reward for cooperation. The virtual reward for cooperation is ascertained dynamically by a coordinating agent who est...

متن کامل

Multiagent cooperation and competition with deep reinforcement learning

Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent env...

متن کامل

Dueling Network Architectures for Deep Reinforcement Learning

In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning inspired by advantage learning. Our dueling architecture represents two ...

متن کامل

Cost-Sensitive Exploration in Bayesian Reinforcement Learning

In this paper, we consider Bayesian reinforcement learning (BRL) where actions incur costs in addition to rewards, and thus exploration has to be constrained in terms of the expected total cost while learning to maximize the expected longterm total reward. In order to formalize cost-sensitive exploration, we use the constrained Markov decision process (CMDP) as the model of the environment, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Communications

سال: 2022

ISSN: ['1558-0857', '0090-6778']

DOI: https://doi.org/10.1109/tcomm.2022.3187146